

The New Definition of Purity for Your Medium

Cooling Water

Plate Heat Exchangers

River Water

Spray Nozzles

Our Filter Systems Protect

Sea Water

Emulsions

Piping Systems

Sinter and Scale Separation

Mechanical Seals

Process Water

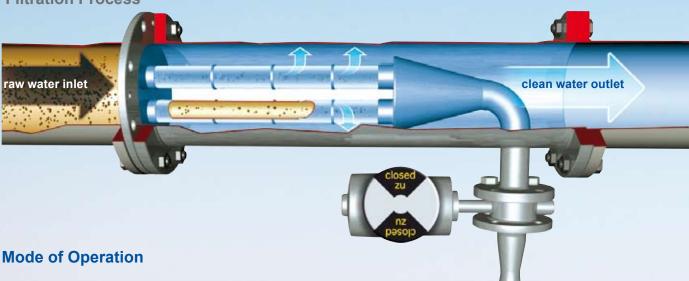
Pumps

Mussel / Mussel Larvae Separation

Micro Filtration

flow rate	1 m³/h to 25,000 m³/h
filter fineness	≥ 50 µm, ≤ 5 mm
operating pressure	1.5 to 63 bar
pressure loss with clean fil	ter 0.1 to 0.3 bar
flange	DN 50 to DN 3000
temperature	– 25 to + 200 °C
automatic / manual backwas	h

Scope of Delivery



voltage 230 V or 400 V	•	
voltage 110 V to 690 V		Δ
Pressure Equipment Directive (PED)	•	
ASME		Δ
explosion protection		Δ
differential pressure gauging	•	
differential pressure as 4-20 mA-signal		Δ
automatic filter control	•	
self-medium backwash	•	
external medium backwash		Δ
backwash with suction pump		Δ
electric or pneumatic backwash valve		
signal exchange with PLC	•	
electrical cabling incl. connectors	•	
documentation	•	
certificates	•	Δ
functional test at manufacturer's works	•	
included in the scope of delivery		•

available at extra charge

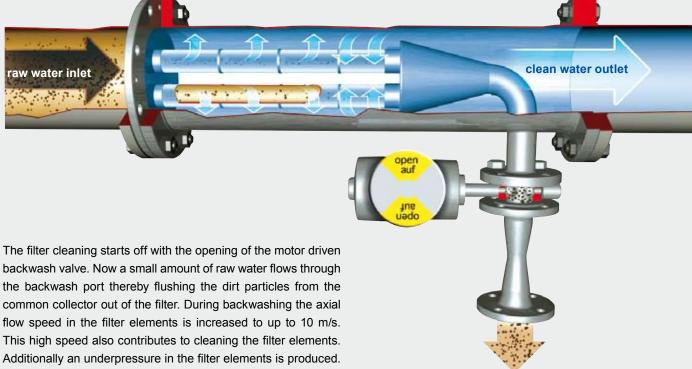
	standard design	sea water resistant design	special design
filter housing	carbon steel galvanized, carbon steel coated	GRP, steel gummed, stainless steel	PP, PE, PVC
filter elements	stainless steel	stainless steel	stainless steel

Filtration Process

The raw water enters the filter elements through the ports of the cartridge holding plate. The reduction of the cross section leads to a proportional increase of the axial flow speed in the filter elements up to 5 - 7 m/s.

At one end of the filter elements a conical common dirt collector is placed.

According to the rule of Bernoulli the raw water filtration takes place in the last third of the filter elements. The raw water passes the filter elements from inside to outside. The cleaned water then passes the common collector and leaves the filter on the clean water side.


Because of the axial flow speed of 5 - 7 m/s in the filter elements the dirt particles are discharged in the common collector. The backwash process is triggered off by the differential pressure (pressure difference between raw and clean water side). Additionally an adjustable time lag relay in the electric control permits the start of the backwash process.

backwash water outlet

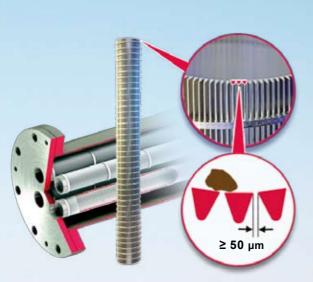

Fig. 2

Fig. 3

Backwash Process

This guarantees the elements' backwashing from outside to inside with clean water. After 10 - 20 seconds the backwash process is finished and the backwash valve closes automatically. During backwashing the filtration process is not interrupted.

Filter Elements

Stainless steel slotted tube cartridges with axial slots for optimal filter element cleaning.

Electric Control

The backwash process is started off depending on time and / or differential pressure thus ensuring a fully automatic filter operation. The standard control includes the following signal exchanges with the customer's control system (PLC):

- collective fault indication
- ready for operation
- filter is backwashing
- external starting of the backwash process
- external release of the backwash process

Venturi Nozzle and Backwash Valve

The venturi nozzle is dimensioned according to the conditions at site for regulating the necessary backwash water amount and for avoiding pressure fluctuations in the piping system. As standard the backwash valve is equipped with an electric or a pneumatic drive.

Differential Pressure Gauging

Consisting of:

- optical inlet-pressure indicator
- optical indicator of the differential pressure
- 2 adjustable micro-switches
- start filter backwash
- alarm signal

Range of Application

Fig. 8 sea water filtration for snow making system

Fig. 9 river water filtration in chemical works

Fig. 10 cooling water filtration for CERN,
Genf (European Organization for
Nuclear Research)

Fig. 11 drinking and process water filtration in brewery

Process Diagram

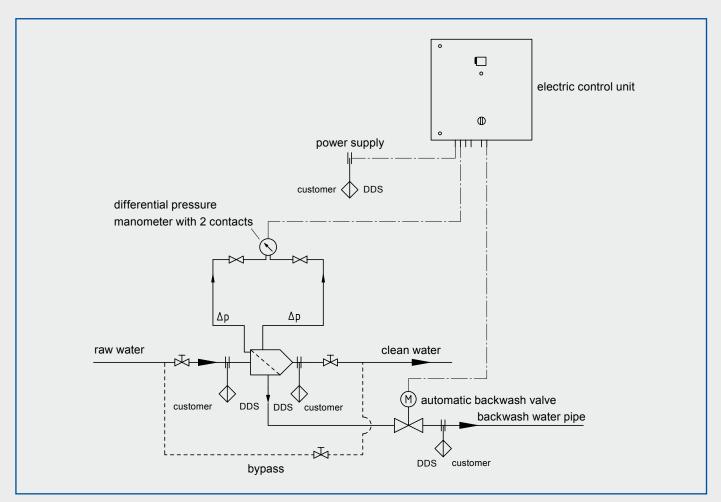


Fig. 12

Fig. 13

Advantages

- high backwash speed (up to 10 m/s)
- any mounting position (horizontally / vertically)
- simple installation (inline construction)
- low wear (no movable parts in the filter)
- low backwash water loss
- no differential pressure increase during the filtering process
- wide range of materials
- ready-made cabling
- special design possible on customer's request

